Dietary protein-induced hepatic IGF-1 secretion mediated by PPARγ activation
نویسندگان
چکیده
Dietary protein or amino acid (AA) is a crucial nutritional factor to regulate hepatic insulin-like growth factor-1 (IGF-1) expression and secretion. However, the underlying intracellular mechanism by which dietary protein or AA induces IGF-1 expression remains unknown. We compared the IGF-1 gene expression and plasma IGF-1 level of pigs fed with normal crude protein (CP, 20%) and low-protein levels (LP, 14%). RNA sequencing (RNA-seq) was performed to detect transcript expression in the liver in response to dietary protein. The results showed that serum concentrations and mRNA levels of IGF-1 in the liver were higher in the CP group than in the LP group. RNA-seq analysis identified a total of 1319 differentially expressed transcripts (667 upregulated and 652 downregulated), among which the terms "oxidative phosphorylation", "ribosome", "gap junction", "PPAR signaling pathway", and "focal adhesion" were enriched. In addition, the porcine primary hepatocyte and HepG2 cell models also demonstrated that the mRNA and protein levels of IGF-1 and PPARγ increased with the increasing AA concentration in the culture. The PPARγ activator troglitazone increased IGF-1 gene expression and secretion in a dose dependent manner. Furthermore, inhibition of PPARγ effectively reversed the effects of the high AA concentration on the mRNA expression of IGF-1 and IGFBP-1 in HepG2 cells. Moreover, the protein levels of IGF-1 and PPARγ, as well as the phosphorylation of mTOR, significantly increased in HepG2 cells under high AA concentrations. mTOR phosphorylation can be decreased by the mTOR antagonist, rapamycin. The immunoprecipitation results also showed that high AA concentrations significantly increased the interaction of mTOR and PPARγ. In summary, PPARγ plays an important role in the regulation of IGF-1 secretion and gene expression in response to dietary protein.
منابع مشابه
Erythropoietin alleviates hepatic insulin resistance via PPARγ-dependent AKT activation
Erythropoietin (EPO) has beneficial effects on glucose metabolism and insulin resistance. However, the mechanism underlying these effects has not yet been elucidated. This study aimed to investigate how EPO affects hepatic glucose metabolism. Here, we report that EPO administration promoted phosphatidylinositol 3-kinase (PI3K)/AKT pathway activation in palmitic acid (PA)-treated HepG2 cells and...
متن کاملCorrection: Pigment Epithelium-Derived Factor 34-mer Peptide Prevents Liver Fibrosis and Hepatic Stellate Cell Activation through Down-Regulation of the PDGF Receptor
Pigment epithelium-derived factor (PEDF) has been shown previously to prevent liver fibrosis and hepatic stellate cell (HSC) activation. By investigating the functional domains in PEDF, we identified a 34-mer peptide (residues Asp44-Asn77) that harbors the same function as the full-length PEDF protein. Not only did the 34-mer suppress the development of fibrosis in carbon tetrachloride (CCl4)-t...
متن کاملPhosphoinositide 3-kinases p110α and p110β have differential roles in insulin-like growth factor-1-mediated Akt phosphorylation and platelet priming.
OBJECTIVE Platelet hyperactivity is a contributing factor in the pathogenesis of cardiovascular disease and can be induced by elevated levels of circulating growth factors, such as insulin-like growth factor-1 (IGF-1). IGF-1 is a primer that cannot stimulate platelet activation by itself, but in combination with physiological stimuli can potentiate platelet functional responses via a phosphoino...
متن کاملGhrelin promotes hepatic lipogenesis by activation of mTOR-PPARγ signaling pathway.
Although ghrelin has been demonstrated to stimulate energy intake and storage through a central mechanism, its effect on hepatic lipid metabolism remains largely uncharacterized. Ghrelin receptor antagonism or gene deletion significantly decreased obesity-associated hepatic steatosis by suppression of de novo lipogenesis, whereas exogenous ghrelin stimulated lipogenesis, leading to hepatic lipi...
متن کاملRegulation of peroxisome proliferator-activated receptor-γ by angiotensin II via transforming growth factor-β1-activated p38 mitogen-activated protein kinase in aortic smooth muscle cells.
OBJECTIVE Peroxisome proliferator-activated receptor-γ (PPARγ) ligands attenuate angiotensin II (Ang II)-induced atherosclerosis through interactions with vascular smooth muscle cell (VSMC)-specific PPARγ in hypercholesterolemic mice. Therefore, the purpose of this study was to determine the mechanism of Ang II-mediated intracellular regulation of PPARγ in VSMCs. METHODS AND RESULTS Incubatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017